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Abstract

The paper presents the full formulation for a crack model for analyzing the triply coupled free vibration of both

Timoshenko (short) and Euler–Bernoulli (long) shaft beams based on compliance approach in the presence of a planar

open edge crack in an arbitrary angular orientation with a reference direction. The compliance coefficients to account for

the local flexibility due to the crack for both the beams have been obtained through the concept of strain energy release rate

and crack tip stress field given in terms of the stress intensity factors. The type of disturbance in stress–strain field that a

continuous cracked beam theory can accommodate is not within the scope of the model. The compliance matrices for the

Timoshenko (short) and Euler–Bernoulli (long) beams, respectively, are of size 6� 6 and 3� 3, and they consist of only

9 and 4 nonzero coefficients. The variation of the coefficients with crack orientation is presented. Equations governing the

free transverse and torsion vibrations are derived and solved in both the cases. The formulation has been checked by

comparing the theoretical frequencies with the finite element results for a few crack orientations, locations and depths. The

agreement is good. It is shown further that, when such cases are analysed for studying the transverse vibration only in one

plane by invoking a single rotational spring at the crack location, the approach leads to an erroneous variation of the

frequencies with the crack orientations. The data presented here will be useful to solve both forward and inverse problems.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

During the last three decades detection of crack in machine and structrural components has received a
considerable attention. Excellent reviews are presented by Wauer [1], Gasch [2], Dimarogonas [3] and
Papadopoulos [4]. These indicate clearly that the modelling of a crack is the most significant issue in this area.
Dimarogonas and Massouros [5] combined the spring-hinge, or the rotational spring, model with fracture
mechanics based results to evolve an attractive method for crack identification. This idea was further extended
to cover cases with arbitrary loading by Papadopoulos and Dimarogonas [6]. If the crack opens and closes
during the rotation the system becomes nonlinear. This makes the component response complicated. In the
case of rotors, two families of harmonics are observed on top of the second harmonic of rotation and the
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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sub-harmonic of the critical speed. The first concerns higher harmonics of the rotating speed [3] due to the
nonlinearity of the closing crack. The second includes the longitudinal and torsion harmonics in the start-up
lateral vibration spectrum due to the coupling.

Darpe et al. [7,8] have investigated into the response of a Jeffcott rotor to axial excitation of different
frequencies. They have observed based on both theoretical and experimental studies clear differences in the
frequency spectra of the rotor with and without crack. These differences can be utilised to confirm the presence
of a crack. Darpe et al. [9] too have investigated into the coupled longitudinal, lateral and torsion vibration for
a rotating shaft using a response dependent nonlinear breathing crack. They reported presence of sums or/and
differences of frequencies in the vibration spectra arising out of the nonlinearity.

Flaws/cracks developing in a component during service may seriously influence its dynamic behaviour.
These may cause changes in its mass distribution and damping properties. The crack may also modify the
stress–strain field over a larger distance than covered by a solution based on the stress intensity factor. In such
cases continuous cracked beam approach based on the Hu–Washizu or Hu–Washizu–Barr variational
statement presented by Christides and Barr [10,11], Shen and Pierre [12], Chandros [13,14], Chandros and
Labeas [15], etc., may be more appropriate for obtaining the natural frequencies with better accuracy.

A crack can be modeled as an ‘open’ or ‘breathing’ crack. In the case of open crack model the local
flexibility can be represented by a flexibility matrix [6] of dimension (6� 6) under the most general loading. An
important review concerning determination of local flexibility coefficients/matrix in the presence of a single
crack based on the concept of strain energy release rate has been recently presented by Papadopoulos [4]. For
some cases simplification is possible and the local flexibility can be conveniently represented by a single
rotational spring [4,16] or a reduction in cross-sectional dimensions [17]. The representation through the local
flexibility or the rotational spring is very convenient because of its ability to facilitate solution of an inverse
problem, where the crack details are to be determined knowing the component vibration response. On the
other hand, in the solution to a forward problem, system eigenfrequencies, mode shapes, etc., are predicted
with the knowledge of crack details, e.g., crack location, depth and orientation angle.

Lele and Maiti [18] have solved both the forward and inverse problems associated with a Timoshenko beam
of rectangular cross-section with an open edge crack. The beam vibrates only in one of the planes of
symmetry. They have represented the crack by a rotational spring. Dharmaraju et al. [19] have developed a
general algorithm for estimation of crack depth using experimentally measured forced vibration response.
They have used an Euler–Bernoulli beam element to model the beam of circular cross section through finite
element method (FEM). The crack is considered in the vertical orientation and has been modeled by a local
compliance matrix. The coupled response in the vertical and horizontal directions is used to identify the crack
parameters.

Dado and Abuzeid [20] have presented the vibration behaviour of an Euler–Bernoulli beam of rectangular
cross section with end mass and rotary inertia. They have studied the coupled longitudinal and transverse
vibrations using the compliance approach. Ostachowicz and Krawczuk [21] have developed a special finite
element (FE) to represent a segment of shaft beam with an open edge crack in the vertical orientation. They
have formulated for coupled bending and torsion vibrations for a Timoshenko beam and employed the
compliance approach to determine flexibility matrix of the special element. Darpe et al. [9] have extended the
approach of Ostachowicz and Krawczuk [21] to account for additional longitudinal coupling for a breathing
crack in the same orientation. The coupling of transverse vibrations for long beam of solid circular section is
addressed by Chasalevris and Papadopoulos [22]. Problem involving hollow circular and rectangular section
has been examined by Zheng and Fan [23], and Gounaris et al. [24]. A method for identification of location
and depth of the edge crack using the measured coupled vibration response has been presented by Gounaris
and Papadopoulos [25]. They have given a cracked circular element, with 12 degrees of freedom per element,
for analysing a Timoshenko shaft beam. The model is capable of accommodating gyroscopic effect as well.
Chondros et al. [26] have employed a continuous cracked beam theory for prediction of changes in the
transverse natural frequencies for a simply supported beam with a breathing crack. The crack is modeled as a
continuous flexibility through a displacement field in the vicinity of the crack. Both bilinear and linear models
are considered to study the problem. They have reported that changes in natural frequencies for a fatigue-
breathing crack are smaller than those due to an open crack. That is, the open crack model over-predicts the
changes in the lowest natural frequency.
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Fig. 1. Crack in two different orientations. (a) y ¼ 01 and (b) arbitrary y.
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Zheng and Kessissoglou [27] have established a scheme to obtain the natural frequencies and mode shapes
of a beam through the FEM. They have introduced the artefact of an ‘overall additional flexibility matrix’ to
the intact beam flexibility matrix to account for the crack. They have claimed that the method gives results
more accurate than those obtained by the concept of local flexibility matrix.

Most studies consider the case of a vertical crack (Fig. 1a) giving rise to coupled transverse and torsion
vibrations. A crack due to a manufacturing defect, and/or service loading, and/or environment, can occur in
an arbitrary orientation (Fig. 1b) in the case of non-rotating component. Alternatively, the response collected
from a rotating system may correspond to an arbitrary angular crack orientation with respect to, say, the
vertical direction. There is, therefore, a need to study both the forward and inverse problem solutions
associated with such a situation.

In the present paper a solution to the triply coupled forward vibration problem is attempted based on the
localised compliance approach to model a crack. It is relevant to note here that the inverse problem of this
type has been studied by Naniwadekar et al. [28] considering a single rotational spring based representation of
the crack in pipes. The spring stiffness was obtained experimentally. They have been able to predict the crack
location and the size. Chasalevris and Papadopoulos [22] have solved both the forward and inverse problems
for a shaft with two arbitrarily oriented cracks in an Euler–Bernoulli beam using the compliance approach.
The situation gives rise to coupled transverse vibration in the two orthogonal directions. The prediction of
crack is based on wavelet transformation of the response. Saridakis et al. [29] have extended the same study
further to compute natural frequencies in both the vertical and horizontal directions. They solved the related
inverse problem through a fuzzy logic and genetic algorithm based optimization method.
2. Local compliance coefficients

When a crack is oriented at y ¼ 01 (Fig. 1a), load P2 in z direction does not lead to any crack face relative
displacement in direction y and vice versa [6]. On the other hand, for an angular orientation of the crack
(Fig. 1b) P2 applied in z direction gives rise to the displacement in y direction and vice versa. In this case not
only the compliance coefficients c22 or c33 but also c23 is greater than zero.

For a shaft beam, noting that P2 and P3 cause mode III and mode II (Fig. 1a) crack face displacements,
respectively, the same loads in the presence of an angularly oriented crack (Fig. 1b) give rise to both the modes
of displacements simultaneously. Hence each of the three compliance coefficients will have contribution from
both the modes (II and III).



ARTICLE IN PRESS

R

a

h

az

dy

2b

y

z
dz

z

y

P4

P2
Z

y

x

P6

L

Lc

P5

P3

P1
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In the most general case of loading (Fig. 2a) and a crack in 01 orientation, the compliance coefficients are
given in Ref. [6].

With an angular crack orientation y (Fig. 3a) the components of loads in the y1–z1 system, represented by an
additional subscript y, are given by

P3y ¼ P3 cos y� P2 sin y

P2y ¼ P3 sin yþ P2 cos y

P4y ¼ �P4 cos y� P5 sin y

P5y ¼ �P4 sin yþ P5 cos y

9>>>=
>>>;

(1)
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Adopting the approach similar to Papadopoulos and Dimarogonas [6], additional crack face relative
displacement ui, i ¼ 2; 3; . . . ; 6, along the direction of Pi due to the presence of a crack of depth a1 is obtained
through integration.

ui ¼
@

@Pi

Z A

0

J dA (2)

where J is the local strain energy release rate, dA ¼ dy1 dz1 (Fig. 3b) and A is area of crack. Note that ui is
displacement in the ith direction in y– z system. Under a combined loading J is given by

J ¼
1

E0

X6
i¼1

K Ii

 !2

þ
X6
i¼1

K IIi

 !2

þ ð1þ nÞ
X6
i¼1

K IIIi

 !2
2
4

3
5 (3)

where E0 ¼ E for plane stress, E0 ¼ E/(1�n2) for plane strain, E is modulus of elasticity, n is the Poisson’s ratio
and KIi, KIIi, KIIIi are the SIFs for modes I, II and III corresponding to loads Piy. The energy calculation is
facilitated by taking y1�z1 as reference. For a shaft beam, computation of J is facilitated [6] by dividing the
whole span 2b1 into a number of strips of thickness dz1 and considering each of them to be under plane strain.
Noting that the local flexibility c0ijy due to the crack per unit width is given [6] by

c0ijy ¼
qui

qPj

¼
q2

qPi qPj

Z
az1l

J daz1 (4)
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Total compliance is obtained as follows:

cijy ¼
q2

qPi qPj

Z A

0

J dA ¼
q2

qPi qPj

Z b1

�b1

Z
az1l

Jðaz1Þdy1 dz1 (5)

where az1 ¼
h
2
� y1.

To differentiate cij’s corresponding to y ¼ 01 and ya01, y is added as a subscript in the latter case. Though
the additional displacements are calculated in y–z coordinates, the strain energy and strain energy release rate
J computation is facilitated by taking y1–z1 coordinates as the basis. The nonzero coefficients in dimensionless
form are given below:

c̄11y ¼
pERc11y

1� n2
¼ 4

Z b̄1

0

Z
az1l

ȳ1F
2
1

āz1

h̄1

� �
dȳ1 dz̄1 (6)

c̄14y ¼
pER2c14y

1� n2
¼ 8 cos y

Z b̄1

0

Z
az1l

z̄1ȳ1F2
1

āz1

h̄1

� �
dȳ1 dz̄1 (7)

c̄15y ¼
pER2c15y

1� n2
¼ 16 cos y

Z b̄1

0

Z
az1l

ȳ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z̄2

p
F 1

āz1

h̄1

� �
F 2

āz1

h̄1

� �
dȳ1 dz̄1 (8)

where F1 and F2 are SIF correction factors given in Ref. [6]. As indicated earlier, for calculations of shear
mode coefficients c22y, c33y and c23y, contributions to strain energy release rate from both crack face
displacement modes II and III must be considered. That is,

c̄22y ¼
pERc22y

1� n2
¼ 4

Z b̄1

0

Z
az1l

ȳ1k
02 F 2

II

āz1

h̄1

� �
sin2yþmF 2

III

āz1

h̄1

� �
cos2 y

� �
dȳ1 dz̄1 (9)

c̄33y ¼
pERc33y

1� n2
¼ 4

Z b̄1

0

Z
az1l

ȳ1k
02 F 2

II

āz1

h̄1

� �
cos2 yþmF 2

III

āz1

h̄1

� �
sin2 y

� �
dȳ1 dz̄1 (10)

c̄23y ¼
pERc23y

1� n2
¼ 4

Z b̄1

0

Z
az1l

ȳ1K 0
2

mF 2
III

āz1

h̄1

� �
� F2

II

āz1

h̄1

� �� �
sin y cos y

� �
dȳ1 dz̄1 (11)

where FII and FIII are correction factors indicated in Ref. [6]. For calculating FIII it is more appropriate to use
the average shear stress over the crack depth rather than the maximum, as indicated by Ref. [6]. Further, for
the bending compliance coefficients c44y and c55y contributions to the strain energy release rate from both the
loads P4 and P5 (Fig. 3a) must be considered:

c̄44y ¼
pER3c44y

1� n2
¼ 64

Z b̄1

0

Z
az1l

ðA1 cos
2 yþ B1 sin

2 y� C1 sin y cos yÞdȳ1 dz̄1 (12)

c̄55y ¼
pER3c55y

1� n2
¼ 64

Z b̄1

0

Z
az1l

ðA1 sin
2 yþ B1 cos

2 yþ C1 sin y cos yÞdȳ1 dz̄1 (13)

c̄45y ¼
pER3c45y

1� n2
¼ 64

Z b̄1

0

Z
az1l

ðsin y cos yðA1 � B1Þ þ C1ðcos
2 y� sin2 yÞÞdȳ1 dz̄1 (14)

where

A1 ¼ z̄21ȳ1F2
1

āz1

h̄1

� �
; B1 ¼ ð1� z̄21Þȳ1F

2
2

āz1

h̄1

� �
; C1 ¼ z̄1ȳ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z̄21

q
F 1

āz1

h̄1

� �
F 2

āz1

h̄1

� �

In case of a fatigue-breathing crack, the integration associated with Eqs. (12)–(14) are to be done from 0 to b̄1

only [30].
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The other nonzero compliance coefficients are computed through the following relations:

c̄66y ¼
pER3c66y

1� n2
¼ 16

Z b̄1

0

Z
az1l

ȳ1 z̄21F2
II

āz1

h̄1

� �
þmð1� z̄21ÞF

2
IIIt

āz1

h̄1

� �� �
dȳ1 dz̄1 (15)

c̄26y ¼
pER2c26y

1� n2
¼ 8

Z b̄1

0

Z
az1l

ȳ1k
0
�z1F2

II

āz1

h̄1

� �
sin y�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z̄21Þ

q
F III

āz1

h̄1

� �
F IIIt

āz1

h̄1

� �
cos y

� �
dȳ1 dz̄1 (16)

c̄36y ¼
pER2c36y

1� n2
¼ 8

Z b̄1

0

Z
az1l

ȳ1 z̄1F
2
II

āz1

h̄1

� �
cos y�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z̄21Þ

q
F III

āz1

h̄1

� �
F IIIt

āz1

h̄1

� �
sin y

� �
dȳ1 dz̄1 (17)

where z̄1 ¼ z1=R, ȳ1 ¼ y1=R, āz1 ¼ az1=R, h̄1 ¼ h1=R, m ¼ (1+n). FIIIt indicates the correction factor with the
consideration of average shear stress over the crack depth. It may be noted that the angular orientation of the
crack does not affect the longitudinal and torsion compliances. Therefore, c̄11y ¼ c̄11 and c̄66y ¼ c̄66.

Finally, the full (6� 6) symmetric dimensionless compliance matrix for the shaft beam is as follows:

c̄ijy ¼

c̄11y 0 0 c̄14y c̄15y 0

0 c̄22y c̄23y 0 0 c̄26y

0 c̄32y c̄33y 0 0 c̄36y

c̄41y 0 0 c̄44y c̄45y 0

c̄51y 0 0 c̄54y c̄55y 0

0 c̄62y c̄63y 0 0 c̄66y

2
6666666664

3
7777777775

(18)

The dimensionless compliance matrix for a Timoshenko beam subjected to all loads but P1 is given by

c̄ijy ¼

c̄22y c̄23y 0 0 c̄26y

c̄32y c̄33y 0 0 c̄36y

0 0 c̄44y c̄45y 0

0 0 c̄54y c̄55y 0

c̄62y c̄63y 0 0 c̄66y

2
6666664

3
7777775

(19)

The dimensionless compliance matrix for an Euler–Bernoulli beam is obtained by neglecting the shear related
terms. That is,

c̄ijy ¼

c̄44y c̄45y 0

c̄54y c̄55y 0

0 0 c̄66y

2
64

3
75 (20)

The local stiffness coefficients can be obtained by inverting the compliance matrix.
The variations of the compliance matrix coefficients with relative crack depth (a/R) are shown in Fig. 4.

Also the variations of dimensionless compliance coefficients with the crack orientation angle are shown in Fig. 5.
Clearly the pairs c22y and c33y, and c44y and c55y, show the reciprocal behaviour with respect to crack orientation,
as expected.

3. Calculation of one dimensional bending stiffness

When a beam with a crack vibrates, its motion in a single plane, say y– x plane (Fig. 6), where x is directed
out of the, plane of paper, can be easily modelled by invoking a single rotational spring at the crack location.
The spring stiffness can be calculated as follows. Considering only bending load P5 (Fig. 6) acting, its
componenets along z1 and y1 are P5z1 ¼ P5 cos y and P5y1 ¼ �P5 sin y.

If the local slope discontinuities due to these moments are fz1 and fy1, respectively, in y1–z1 system,
their components along z direction are: f1 ¼ fz1 cos y, and f2 ¼ fy1 sin y. Writing fz1 and fy1 in terms
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of P5z1 and P5y1 and representing the corresponding rotational spring stiffnessess as K0 and K90

fz1 ¼
P5z1

K0
¼

P5z1

K0
cos y; f1 ¼

P5

K0
cos2 y (21)

fy1 ¼
P5y1

K90
¼

P5y1

K90
sin y; f2 ¼

P5

K90
sin2 y (22)

The total local slope discontinuity f in the plane y�x

f ¼ f1 þ f2 ¼ P5
cos2 y

K0
þ

sin2 y
K90

� �
(23)

This gives

1

Ky
¼

f
P5
¼

cos2 y
K0
þ

sin2 y
K90

� �
(24)
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Alternatively,
Ky

K0
¼

K90

K90 cos2 yþ K0 sin
2 y

(25)

In dimensionless form
K̄y

K̄0

¼
K̄90

K̄90 cos2 yþ K̄0 sin
2 y

(26)

where K̄y ¼ KyL=EI and K̄0 ¼ K0L=EI .
This relationship is alternatively obtainable from the rigorous relation (12) as follows. When P4 ¼ 0,

Eq. (12) can be written as:

c̄44y ¼ cos2 y
Z b̄1

0

Z
az1l

64z̄21ȳ1F
2
1

āz1

h̄1

� �
dȳ1 dz̄1 þ sin2 y

Z b̄1

0

Z
az1l

64ð1� z̄21Þȳ1F2
2

āz1

h̄1

� �
dȳ1 dz̄1

� sin y cos y
Z b̄1

0

Z
az1l

64z̄1ȳ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z̄21

q
F 1

āz1

h̄1

� �
F 2

āz1

h̄1

� �
dȳ1 dz̄ (27)
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where first integral corresponds to c̄440, and similarly the second integral corresponds to c̄550. Incidentally, c̄440
and c̄550 represent compliances corresponding to 01 crack orientation angle. Hence,

c̄44y ¼ c̄440 cos
2 yþ c̄550 sin

2 y� c̄450 sin y cos y (28)

Similarly starting from Eq. (13) the following relation is obtained:

c̄55y ¼ c̄550 cos
2 yþ c̄440 sin

2 yþ c̄450 sin y cos y (29)

This gives rise to an important relation for such a case

c̄440 þ c̄550 ¼ c̄44y þ c̄55y (30)

Again from Eq. (29), noting that c̄450 ¼ 0;

c̄55y ¼ c̄550 cos2 yþ
c̄440

c̄550
sin2 y

� �
(31)
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Noting that K̄55y ¼ K̄y ¼ 1=c̄55y, K̄550 ¼ K̄0 ¼ 1=c̄550 and K̄440 ¼ K̄90 ¼ 1=c̄440, this relation is the same as
Eq. (26).

The rotational spring stiffness therefore increases with y. The variation of dimensionless rotational spring
stiffness with y is shown in Fig. 7 for a long cantilever beam with the following dimensions and material data:
Shaft diameter D ¼ 0.04m, length L ¼ 0.8m, crack located at 0.2L from the fixed end, crack depth a ¼ 0.4D,
E ¼ 200GPa, r ¼ 7800 kgm�3 and n ¼ 0.3. The stiffnesses were computed for five orientations, 01, 301, 451,
601, 701, 801 and 901, by displacement method [28] through 3D FE analysis using ANSYS (version 9.0)
software. Discretisation consisted of all ‘Solid95’ elements.

The FE results are included in Fig. 7. There is very good agreement between theoretical and FE results. The
maximum difference observed is 8.4% at y ¼ 451.
4. Natural frequencies of Timoshenko (short) beam with crack

For a cantilever shaft beam with a crack in an arbitrary orientation with the vertical axis y and located at a
distance Lc from the fixed end (Fig. 8), any arbitrary excitation of the shaft, except about the axis of symmetry
of the crack-section, causes its free transverse vibrations in both y and z directions and torsion vibrations
about x axis. Since the cross section at the crack-section is asymmetric with respect to y and z axes, there are
triply coupled vibrations. That is, two transverse vibrations are coupled; the two transverse vibrations
are coupled individually with the torsion vibration. When crack is oriented at y ¼ 01 or 901 the vibrations are
doubly coupled because the two transverse vibrations are uncoupled.

To model the vibration of the shaft beam (Fig. 8) it can be split into two segments, AB and BC. The motion
of each segment can be separately studied and their individual motions can be connected through compliance
matrix noting that there are local incompabilities. The equations of two transverse vibrations and torsion
vibration for each segment are given by equations of the type as follows:

EI
q4Y ðx; tÞ

qx4
þ Asr

q2Y ðx; tÞ
qt2

� rI 1þ
E

k0G

� �
q4Y ðx; tÞ
qx2 dt2

þ
r2I

k0G

� �
q4Y ðx; tÞ

qt4
¼ 0 (32)

EI
q4Zðx; tÞ

qx4
þ Asr

q2Zðx; tÞ

qt2
� rI 1þ

E

k0G

� �
q4Zðx; tÞ
qx2 qt2

þ
r2I
k0G

� �
q4Zðx; tÞ

qt4
¼ 0 (33)

q2Yðx; tÞ
qx2

�
r
G

q2Yðx; tÞ
qt2

¼ 0 (34)

where Y, Z and Y stand for the displacement mode shapes in y, z and y directions, respectively, As is
area of cross section, r is material density, E is modulus of elasticity, k0 ¼ 6(1+n)/(7+6n) is shape co-
efficient for circular cross section, G is modulus of rigidity and I is moment of inertia of the beam cross
section.
Lc

L

1

A B C

2

y

x

Fig. 8. Cantilever shaft beam with crack.
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Through separation of variables the solutions are obtained following the procedure of Ref. [18] as follows:

Y 1 ¼ C1 coshðbpbÞ þ C2 sinhðbpbÞ þ C3 cosðbqbÞ þ C4 sinðbqbÞ

c1 ¼ C01 sinhðbpbÞ þ C02 coshðbpbÞ þ C03 sinðbqbÞ þ C04 cosðbqbÞ

Y 2 ¼ C5 coshðbpbÞ þ C6 sinhðbpbÞ þ C7 cosðbqbÞ þ C8 sinðbqbÞ

c2 ¼ C05 sinhðbpbÞ þ C06 coshðbpbÞ þ C07 sinðbqbÞ þ C08 cosðbqbÞ

9>>>>=
>>>>;

(35)

Z1 ¼ C9 coshðbpbÞ þ C10 sinhðbpbÞ þ C11 cosðbqbÞ þ C12 sinðbqbÞ

f1 ¼ C09 sinhðbpbÞ þ C010 coshðbpbÞ þ C011 sinðbqbÞ þ C012 cosðbqbÞ

Z2 ¼ C13 coshðbpbÞ þ C14 sinhðbpbÞ þ C15 cosðbqbÞ þ C16 sinðbqbÞ

f2 ¼ C013 sinhðbpbÞ þ C014 coshðbpbÞ þ C015 sinðbqbÞ þ C016 cosðbqbÞ

9>>>>=
>>>>;

(36)

Ȳ1 ¼ C17 cosðk̄ybÞ þ C18 sinðk̄ybÞ

Ȳ2 ¼ C19 cosðk̄ybÞ þ C20 sinðk̄ybÞ

)
(37)

where Ci (i ¼ 1 to 20) and C0i (i ¼ 1 to 16) are all arbitrary constants, b ¼ Lc/L and, c and f are the slopes of
the deflection curves in the x– y (vertical) and x�z (horizontal) planes, respectively, suffixes 1 and 2 stand for
segments AB and BC, respectively, and

C0i ¼
b

L

p2 þ s2

p
Ci for i ¼ 1; 2; 5; 6; 9; 10; 13 and 14 (38)

C 0i ¼ �
b

L

q2 � s2

q
Ci for i ¼ 3; 7; 11 and 15 (39)

C0i ¼
b

L

q2 � s2

q
Ci for i ¼ 4; 8; 12 and 16 (40)

b2
¼

rAL4o2

EI
; s2 ¼

EI

k0AGL2

q

p

)
¼

1ffiffiffi
2
p �ðr2 þ s2Þ þ ðr2 � s2Þ2 þ

4

b2

� �1=2( )1=2

(41)

and

r2 ¼
I

AL2
provided ðr2 � s2Þ2 þ

4

b2

� �1=2
4ðr2 þ s2Þ

Ȳ ¼
Y
L

(42)

k̄y ¼
o2L2r

G
(43)

The boundary conditions for a cantilever configuration, in dimensionless form, are given below.
At the fixed end (b ¼ 0) all displacements, slopes and angle of twist are zero.

Y 1 ¼ 0; Z1 ¼ 0; c1 ¼ 0; f1 ¼ 0; Ȳ1 ¼ 0 (44a2e)

At the free end (b ¼ 1), moments in the two planes, shear forces in the two directions and torque are zero.
That is,

dc2

db
¼ 0;

df
db
¼ 0;

1

L

dY 2

db
� c2 ¼ 0;

1

L

dZ2

db
� f2 ¼ 0;

dȲ
db
¼ 0 at b ¼ 1 (45a2e)
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At the crack location b ¼ b1 the continuity conditions in terms of two moments, two shear forces and torque
are as follows:

dc1

db
¼

dc2

db
;

df1

db
¼

df2

db
;

1

L

dY 1

db
� c1 ¼

1

L

dY 2

db
� c2;

1

L

dZ1

db
� f1 ¼

1

L

dZ2

db
� f2;

dȲ1

db
¼

dȲ2

db

�
(46a2e)

At this location, the jump conditions in slope and shear rotation in the two cartesian directions, and angle of
twist can be represented by

EI

L

dc1

db
¼ k55ðc2 � c1Þ þ k54ðf2 � f1Þ

EI

L

df1

db
¼ k44ðf2 � f1Þ þ k45ðc2 � c1Þ

k0GA
1

L

dY 1

db
� c1

� �
¼ k33ðY 2 � Y 1Þ þ Lk36ðȲ2 � Ȳ1Þ þ k32ðZ2 � Z1Þ

k0GA
1

L

dZ1

db
� f1

� �
¼ k22ðZ2 � Z1Þ þ Lk26ðȲ2 � Ȳ1Þ þ k23ðY 2 � Y 1Þ

GIp

dȲ1

db
¼ Lk66ðȲ2 � Ȳ1Þ þ k62ðZ2 � Z1Þ þ k63ðY 2 � Y 1Þ

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(47a2e)

where kij’s are the stiffness matrix coefficients.
Eqs. (47a and b) are related to jump in slope of the deflection curves; Eqs. (47c and d) are related to jump in

shear deformations; and Eq. (47e) is concerned with discontinuity in the angle of twist.
Substituting Eqs. (35)–(37) in the above conditions give the characteristic determinant of size 20� 20. Roots

of the characteristic equation give the transverse natural frequencies in the vertical and horizontal planes and
torsion frequencies.

5. Natural frequencies of Euler–Bernoulli (long) beam with crack

In case of Euler–Bernoulli cantilever beam, the shear deformations can be neglected. Therefore, for such a
beam with a crack located at a distance Lc from the fixed support, the equations of two transverse vibrations
(in the y and z directions) and torsion vibration for each segment are given by equation of the following type:

@4Y ðx; tÞ

@x4
þ

Asr
EI

@4Y ðx; tÞ

@t4
¼ 0 (48)

@4Zðx; tÞ

@x4
þ

Asr
EI

@4Zðx; tÞ

@t4
¼ 0 (49)

@2Yðx; tÞ
@x2

�
r
G

@2Yðx; tÞ
@t2

¼ 0 (50)

As before, the solutions for Eqs. (48)–(50) are obtained through the method of separation of variables. The
mode shapes for the two segments are as follows.

Y 1 ¼ C1 coshðlbÞ þ C2 sinhðlbÞ þ C3 cosðlbÞ þ C4 sinðlbÞ

Y 2 ¼ C5 coshðlbÞ þ C6 sinhðlbÞ þ C7 cosðlbÞ þ C8 sinðlbÞ

Z1 ¼ C9 coshðlbÞ þ C10 sinhðlbÞ þ C11 cosðlbÞ þ C12 sinðlbÞ

Z2 ¼ C13 coshðlbÞ þ C14 sinhðlbÞ þ C15 cosðlbÞ þ C16 sinðlbÞ

9>>>>=
>>>>;

(51)

Ȳ1 ¼ C17 cosðk̄ybÞ þ C18 sinðk̄ybÞ

Ȳ2 ¼ C19 cosðk̄ybÞ þ C20 sinðk̄ybÞ

)
(52)
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where Ci (i ¼ 1 to 20) are all arbitrary constants and l4 ¼ rAL4o2=EI . The boundary conditions in terms of
deflections, slopes and angle of twist at the fixed end (b ¼ 0) are given by

Y 1 ¼ 0; Z1 ¼ 0;
dY 1

db
¼ 0;

dZ1

db
¼ 0; Ȳ1 ¼ 0 (53a2e)

At the free end (b ¼ 1), bending moments, shear forces and twisting moment are zero. Therefore,

d2Y 2

db2
¼ 0;

d2Z2

db2
¼ 0;

d3Y 2

db3
¼ 0;

d3Z2

db3
¼ 0;

dȲ2

db
¼ 0 at b ¼ 1 (54a2e)

The continuity of displacements, bending moments, shear forces and twisting moment at the crack location
b ¼ b1 are as follows:

Y 1 ¼ Y 2; Z1 ¼ Z2;
d2Y 1

db2
¼

d2Y 2

db2
;

d2Z1

db2
¼

d2Z2

db2
;

d3Y 1

db3
¼

d3Y 2

db3
;

d3Z1

db3
¼

d3Z2

db3
;

dȲ1

db
¼

d̄Ȳ2

db

(55a2g)

The jump conditions at the crack location b ¼ b1 can be written in the following form:

EI
d2Y 1

db2
¼ k55

dY 2

db
�

dY 1

db

� �
þ k54

dZ2

db
�

dZ1

db

� �

EI
d2Z1

db2
¼ k44

dZ2

db
�

dZ1

db

� �
þ k45

dY 2

db
�

dY 1

db

� �

GIp

dȲ
db
¼ Lk66ðȲ2 � Ȳ1Þ

9>>>>>>>>>=
>>>>>>>>>;

(56a2c)

where kij’s are the stiffness matrix coefficients.
As opposed to the Timoshenko beam, though the Euler–Bernoulli beam vibrates in the three directions y, z

and y, only the two transverse vibrations are coupled and there is no torsion–transverse vibration coupling.
Again substituting Eqs. (51) and (52) in the boundary, compatibility and jump condition give the 20� 20
characteristic determinant. Roots of the determinant obtained by equating it to zero give the natural trans-
verse and torsion vibration frequencies.
Crack-free shaft 
Shaft with crack, (a/R)=0.8, β=0200

100

0

-100

-200
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|

Fig. 9. Variation of characteristic determinant with o/o0 for Timoshenko beam for y ¼ 151.
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Fig. 10. Variation of characteristic determinant with o/o0 for Euler–Bernoulli beam for y ¼ 151.
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6. Case studies

The following sets of data are employed for the case studies: L ¼ 0.8m for Euler–Bernoulli beam,
L ¼ 0.28m for Timoshenko beam, shaft diameter D (or 2R) ¼ 0.04m, E ¼ 200GPa, r ¼ 7800 kgm�3 and
n ¼ 0.3. Variations of ln |Q|, where |Q| is the 20� 20 characteristic determinant, with the dimensionless
frequency (o/o0) for the Timoshenko and Euler–Bernoulli beams are shown in Figs. 9 and 10, respectively, for

y ¼ 151. The normalising frequency o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrAL4Þ

q
. It is to be noted that o0 for the Euler–Bernoulli and

Timoshenko beams are different.
The natural frequencies for a crack-free beam are computed by setting all the compliance coefficients to 0 in the

compliance matrix. Alternatively, the same frequencies can be obtained by setting all the stiffness coefficients asN.
Three transverse and two torsion frequencies for the Timoshenko beam considered here fall within the range

shown in Fig. 9; three transverse and one torsion frequencies for the Euler–Bernoulli beam studied fall within
the range shown in Fig. 10. The transverse frequencies corresponding to the y and z directions are closely-
spaced for a particular mode.

The transverse frequencies in the vertical (oiy) and horizontal (oiz) directions do not change with crack
orientation y (Table 1) in the case of both short and long beams for a/R ¼ 0.6 for three modes. These
frequencies were also computed using ANSYS software and are included in the same table. FE results too
indicate that the frequencies do not change with angle y.

The variations of transverse natural frequencies with crack locations and depths for the Timoshenko
(L/D ¼ 20) and Euler–Bernoulli (L/D ¼ 7) beams are shown in Fig. 11. Similar plots for torsion frequncies
are presented in Fig. 12. As expected, all the frequencies decrease as the crack depth increases; the change in a
frequency reduces as the crack location shifts towards the free end. These plots show trends similar to the ones
reported in Refs. [31,32]. Reductions in all the transverse and torsion natural frequecies for a Timoshenko
beam have been found to be more in comparision with those for an Euler–Bernoulli beam.

The vibration of the shaft beam in the vertical plane, when modelled using a single rotational spring,
indicates that the frequencies are dependent with angle y (Table 2). This is completely contradictory to what is
obseved through the triply coupled analysis.

7. Discussion and conclusions

Analyses for the free transverse and torsion vibrations of Timoshenko (short) and Euler–Bernoulli (long)
shaft beams with an open planar edge crack in an arbitrary orientation have been presented. Coupled
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Table 1

Natural frequecies obtained analytically and using EEM for short and long beams.

Crack-free

shaft oi

Mode

identity

FEM Analytical

oi for y ¼ 01 oi for y ¼ 01 oi for y ¼ 151 oi for y ¼ 451 oi for y ¼ 751 oi for y ¼ 901

Short beam (a/R ¼ 0.6 and b ¼ 0.1)

357.3028 o1y 319.06 315.37 315.37 315.37 315.37 315.37

o1z 352.60 344.49 344.49 344.49 344.49 344.49

2101.641 o2y 2044.89 2033.92 2033.92 2033.92 2033.92 2033.92

o2z 2095.66 2079.12 2079.12 2079.12 2079.12 2079.12

2803.9116 o1 torsion 2743.09 2766.67 2766.67 2766.67 2766.67 2766.67

5409.1991 o3y 5411.64 5389.54 5389.54 5389.54 5389.54 5389.54

o3z 5424.15 5401.16 5401.16 5401.16 5401.16 5401.16

8411.5772 o2 torsion 8263.25 8321.97 8321.97 8321.97 8321.97 8321.97

Long beam (a/R ¼ 0.4 and b ¼ 0.1)

44.2451 o1y 42.29 42.57 42.57 42.57 42.57 42.57

o1z 44.02 43.85 43.85 43.85 43.85 43.85

277.4071 o2y 270.85 273.67 273.67 273.67 273.67 273.67

o2z 274.76 276.37 276.37 276.37 276.37 276.37

776.8353 o3y 758.36 775.00 775.00 775.00 775.00 775.00

o3z 760.96 776.28 776.28 776.28 776.28 776.28

981.2712 o1 torsion 973.94 976.81 976.81 976.81 976.81 976.81
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equations of motion have been derived. The compliance matrix coefficients in terms of the angular position of
crack have been determined. Typical variation of the compliance coefficients with angular orientation of crack
has been presented. Existence of a coupling between shear deformations along the two in-plane axes has been
illustrated. The transverse frequencies in the vertical and horizontal directions and torsion frequencies have
been obtained for a few cases and have been verified by comparing with results based on finite element (FE)
analysis. These show that the frequencies are independent of crack orientation, when the full compliance
matrix is employed. The transverse frequency in one plane determined through representation of the crack by
a single rotational spring may, however, show dependencies on crack orientation. Variation of the stiffness of
such a single spring with the crack orientation for a particular crack size is included and it has been compared
with FE results; there is a very good agreement. Natural frequencies of both Timoshenko and Euler–Bernoulli
beams in the vertical and horizontal directions and torsion frequencies have been found to reduce, as expected,
with crack depth. The extent of reduction is inversely related to the crack distance from the fixed end.
These changes may be exploited to solve the inverse problem. Thus, the data presented here will be useful for
analyzing the forward and inverse problems. It is important to note here that the localised crack model
through the compliance approach is a convenient way of representing a crack. However, it should not
be indiscriminately employed in situations, where the underlying assumptions of the model are violated. The
main assumptions are that the influence of crack is localised and its effect can be expressed fully through
the SIFs.
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Fig. 11. Variation of first three transverse frequencies with relative crack depth for Timoshenko (L/D ¼ 7) and Euler–Bernoulli

(L/D ¼ 20) beams. (a), (b) and (c) crack located at fixed end (b ¼ 0). (d), (e) and (f) Crack located at 0.4L from fixed end.
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Fig. 12. Variation of first two torsion frequencies with relative crack depth for Timoshenko (L/D ¼ 7) and Euler–Bernoulli (L/D ¼ 20)

beams. (a) and (b) Crack located at fixed end (b ¼ 0). (c) and (d) Crack located at 0.4L from fixed end.

Table 2

First three transverse natural frequencies for short and long beams in vertical (y-x) plane obtained with single rotational spring model.

Crack-free shaft oi oi for y ¼ 01 oi for y ¼ 151 oi for y ¼ 451 oi for y ¼ 751 oi for y ¼ 901

Short beam (a/R ¼ 0.6 and b ¼ 0.1)

357.3028 315.37 320.94 337.65 343.86 344.49

2101.641 2033.92 2042.04 2067.98 2078.17 2079.28

5409.1991 5389.54 5391.93 5399.73 5402.91 5403.23

Long beam (a/R ¼ 0.4 and b ¼ 0.1)

44.2451 42.58 42.89 43.53 43.84 43.84

277.4071 273.67 274.30 275.74 276.37 276.37

776.8353 775.00 775.17 775.97 776.28 776.28
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